Stretchable Encapsulation Materials with High Dynamic Water Resistivity and Tissue-Matching Elasticity

具有高动态耐水率和组织匹配弹性的可拉伸封装材料

阅读:8
作者:Yan Shao, Shan Yan, Jun Li, Zulmari Silva-Pedraza, Ting Zhou, Marvin Hsieh, Bo Liu, Tong Li, Long Gu, Yunhe Zhao, Yutao Dong, Bo Yin, Xudong Wang

Abstract

Flexible implantable medical devices (IMDs) are an emerging technology that may substantially improve the disease treatment efficacy and quality of life of patients. While many advancements have been achieved in IMDs, the constantly straining application conditions impose extra requirements for the packaging material, which needs to retain both high stretchability and high water resistivity under dynamic strains in a physiological environment. This work reports a polyisobutylene (PIB) blend-based elastomer that simultaneously offers a tissue-like elastic modulus and excellent water resistivity under dynamic strains. The PIB blend is a homogeneous mixture of two types of PIB molecules with distinct molecular weights. The blend achieved an optimal Young's modulus of 62 kPa, matching those of soft biological tissues. The PIB blend film also exhibited an extremely low water permittivity of 1.6-2.9 g m-2 day-1, from unstrained to 50% strain states. The combination of high flexibility and dynamic water resistivity was tested using triboelectric nanogenerators (TENGs). The PIB blend-packaged TENG was able to stably operate in water for 2 weeks, substantially surpassing the protection offered by Ecoflex. This work offered a promising material solution for packaging flexible IMDs to achieve stable performance in a strained physiological environment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。