Neural network extrapolation to distant regions of the protein fitness landscape

神经网络外推至蛋白质适应度景观的遥远区域

阅读:5
作者:Chase R Freschlin #, Sarah A Fahlberg #, Pete Heinzelman, Philip A Romero

Abstract

Machine learning (ML) has transformed protein engineering by constructing models of the underlying sequence-function landscape to accelerate the discovery of new biomolecules. ML-guided protein design requires models, trained on local sequence-function information, to accurately predict distant fitness peaks. In this work, we evaluate neural networks' capacity to extrapolate beyond their training data. We perform model-guided design using a panel of neural network architectures trained on protein G (GB1)-Immunoglobulin G (IgG) binding data and experimentally test thousands of GB1 designs to systematically evaluate the models' extrapolation. We find each model architecture infers markedly different landscapes from the same data, which give rise to unique design preferences. We find simpler models excel in local extrapolation to design high fitness proteins, while more sophisticated convolutional models can venture deep into sequence space to design proteins that fold but are no longer functional. We also find that implementing a simple ensemble of convolutional neural networks enables robust design of high-performing variants in the local landscape. Our findings highlight how each architecture's inductive biases prime them to learn different aspects of the protein fitness landscape and how a simple ensembling approach makes protein engineering more robust.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。