Glutamine metabolism in the proliferation of GS-expression pituitary tumor cells

谷氨酰胺代谢在 GS 表达垂体瘤细胞增殖中的作用

阅读:5
作者:Jintao Hu, Qingbo Chen, Xiao Ding, Xin Zheng, Xuefeng Tang, Song Li, Hui Yang

Conclusions

Our data indicate that GS is needed for PA cells to proliferation during Gln deprivation, and most human PA cells express GS and might have a negative response to exogenous Gln depletion. Moreover, Gln is mainly responsible for nucleotide metabolism in the proliferation of GS-expressing pituitary tumor cells.

Methods

We used cell proliferation assay and flow cytometry to assess the effect of Gln depletion on three different pituitary cell lines and human primary PA cells. Then investigated the expression level of Gln synthetase (GS) in 24 human PA samples. At last, we used LC-MS/MS to identify the differences in metabolites of PA cells after the blockage of both endogenous and exogenous Gln.

Objective

Many cancer cells cannot survive without exogenous glutamine (Gln),however, cancer cells expressed glutamine synthetase (GS) do not have this restriction. Previous metabolomics studies have indicated that glutamine metabolism is altered during pituitary tumorigenesis. However, the main role of Gln in pituitary adenoma (PA) pathophysiology remains unknown. The aim of this study was to evaluate the expression of GS and the main role of Gln in human PAs.

Results

PA cell lines showed different sensitivities to Gln starvation, and the sensitivity is correlated with GS expression level. GS expressed in 21 out of the 24 human PA samples. Furthermore, a positive p53 and ki-67 index was correlated with a higher GS expression level (p<0.05). Removal of both endogenous and exogenous Gln from GS-expressing PA cells resulted in blockage of nucleotide metabolism and cell cycle arrest. Conclusions: Our data indicate that GS is needed for PA cells to proliferation during Gln deprivation, and most human PA cells express GS and might have a negative response to exogenous Gln depletion. Moreover, Gln is mainly responsible for nucleotide metabolism in the proliferation of GS-expressing pituitary tumor cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。