Identification of Capsular Polysaccharide Synthesis Loci Determining Bacteriophage Susceptibility in Tetragenococcus halophilus

确定嗜盐四联球菌噬菌体敏感性的荚膜多糖合成位点

阅读:5
作者:Takura Wakinaka, Minenosuke Matsutani, Jun Watanabe, Yoshinobu Mogi, Masafumi Tokuoka, Akihiro Ohnishi

Abstract

Bacteriophages infecting Tetragenococcus halophilus, a halophilic lactic acid bacterium, have been a major industrial concern due to their detrimental effects on the quality of food products. Previously characterized tetragenococcal phages displayed narrow host ranges, but there is little information on these mechanisms. Here, we revealed the host's determinant factors for phage susceptibility using two virulent phages, phiYA5_2 and phiYG2_4, that infect T. halophilus YA5 and YG2, respectively. Phage-resistant derivatives were obtained from these host strains, and mutations were found at the capsular polysaccharide (CPS) synthesis (cps) loci. Quantification analysis verified that capsular polysaccharide production by the cps derivatives from YG2 was impaired. Transmission electron microscopy observation confirmed the presence of filamentous structures outside the cell walls of YG2 and their absence in the cps derivatives of YG2. Phage adsorption assays revealed that phiYG2_4 adsorbed to YG2 but not its cps derivatives, which suggests that the capsular polysaccharide of YG2 is the specific receptor for phiYG2_4. Interestingly, phiYA5_2 adsorbed and infected cps derivatives of YG2, although neither adsorption to nor infection of the parental strain YG2 by phiYA5_2 was observed. The plaque-surrounding halos formed by phiYA5_2 implied the presence of the virion-associated depolymerase that degrades the capsular polysaccharide of YA5. These results indicated that the capsular polysaccharide is a physical barrier rather than a binding receptor for phiYA5_2 and that phiYA5_2 specifically overcomes the capsular polysaccharide of YA5. Thus, it is suggested that tetragenococcal phages utilize CPSs as binding receptors and/or degrade CPSs to approach host cells. IMPORTANCE T. halophilus is a halophilic lactic acid bacterium that contributes to the fermentation processes for various salted foods. Bacteriophage infections of T. halophilus have been a major industrial problem causing fermentation failures. Here, we identified the cps loci in T. halophilus as genetic determinants of phage susceptibility. The structural diversity of the capsular polysaccharide is responsible for the narrow host ranges of tetragenococcal phages. The information provided here could facilitate future studies on tetragenococcal phages and the development of efficient methods to prevent bacteriophage infections.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。