Epigallocatechin-3-gallate exerts cardioprotective effects related to energy metabolism in pressure overload-induced cardiac dysfunction

表没食子儿茶素-3-没食子酸酯在压力超负荷引起的心脏功能障碍中发挥与能量代谢相关的心脏保护作用

阅读:9
作者:Qiuhong Mou, Zhongli Jia, Min Luo, Lingjuan Liu, Xupei Huang, Junjun Quan, Jie Tian

Background

To investigate the mechanisms of potential cardioprotective effects of epigallocatechin-3-gallate (EGCG) in pressure overload-induced cardiac dysfunction.

Conclusions

EGCG may correct cardiac systolic dysfunction and prevent cardiac remodeling after heart failure via enhancing the energy metabolism, which provides us with new insights into cardioprotective effects of EGCG related to the energy metabolisms in pressure overload-induced cardiac dysfunction.

Methods

A chronic heart failure model was established using abdominal aortic constriction (AAC) surgery, rats were divided into sham, AAC, and AAC + EGCG groups. Echocardiography and tissue section staining were performed to evaluate cardiac function and pathology, respectively. Gene expression level were detected with quantitative real-time polymerase chain reactions. Label-free quantitative proteomics was used to investigate the whole proteomes of heart, and the differentially expressed proteins were analyzed using bioinformatics methods. Western blot was performed to validate the levels and the reliability of the differential proteins.

Results

Compared with the AAC group, systolic dysfunction was improved in AAC + EGCG group after EGCG treatment. EGCG inhibited myocardial fibrosis and cardiac hypertrophy after AAC, along with reducing atrial natriuretic protein, B-type natriuretic peptide, collagen types 1 and 3 alpha 1, and transforming growth factor β-1. Quantitative proteomics identified a total of 162 differentially expressed proteins, among them, 18 were closely related to cardiovascular disorders. Bioinformatics analyses showed that EGCG played a therapeutic role mainly by changing energy metabolism processes, such as oxidative phosphorylation and lipid metabolism. Furthermore, NADH: ubiquinone oxidoreductase subunit S4, an important component of the mitochondrial respiratory chain, was increased after AAC and then reversed by EGCG, which was consistent with the proteomics results. Conclusions: EGCG may correct cardiac systolic dysfunction and prevent cardiac remodeling after heart failure via enhancing the energy metabolism, which provides us with new insights into cardioprotective effects of EGCG related to the energy metabolisms in pressure overload-induced cardiac dysfunction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。