HOXC11-mediated regulation of mitochondrial function modulates chemoresistance in colorectal cancer

HOXC11 介导的线粒体功能调节调节结直肠癌的化学耐药性

阅读:5
作者:Shicheng Chu #, Xiang Ren #, Lianmeng Cao, Chong Ma, Kai Wang

Background

Chemoresistance remains a significant challenge in colorectal cancer (CRC) treatment, necessitating a deeper understanding of its underlying mechanisms. HOXC11 has emerged as a potential regulator in various cancers, but its role in CRC chemoresistance remains unclear.

Conclusions

In summary, our study reveals that HOXC11 regulates mitochondrial function through the modulation of mtDNA transcription, impacting chemoresistance in colorectal cancer cells. These findings underscore the significance of understanding the molecular mechanisms underlying chemoresistance and highlight the potential therapeutic implications of targeting mitochondrial function in CRC treatment.

Methods

Sulforhodamine B assay was employed to assess the cell viability of CRC cells following treatment with chemotherapeutic drugs. Immunofluorescence staining was performed to examine the subcellular localization of HOXC11 in normal and chemoresistant CRC cells. The Seahorse mito stress test was conducted to evaluate the mitochondrial respiratory function of CRC cells. Real-time PCR was utilized to measure the expression level and copy number of mitochondrial DNA (mtDNA).

Results

Our findings revealed that HOXC11 was overexpressed in CRC cells compared to normal colorectal cells and correlated with poorer prognosis in CRC patients. Knockout of HOXC11 reversed acquired chemoresistance in CRC cells. Furthermore, we observed a functional subset of HOXC11 localized to the mitochondria in chemoresistant CRC cells, which regulated mitochondrial function by modulating mtDNA transcription, thereby affecting chemoresistance. Conclusions: In summary, our study reveals that HOXC11 regulates mitochondrial function through the modulation of mtDNA transcription, impacting chemoresistance in colorectal cancer cells. These findings underscore the significance of understanding the molecular mechanisms underlying chemoresistance and highlight the potential therapeutic implications of targeting mitochondrial function in CRC treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。