Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin

体内骨骼的机械刺激可降低骨细胞中Sost/硬化蛋白的表达

阅读:6
作者:Alexander G Robling, Paul J Niziolek, Lee A Baldridge, Keith W Condon, Matthew R Allen, Imranul Alam, Sara M Mantila, Jelica Gluhak-Heinrich, Teresita M Bellido, Stephen E Harris, Charles H Turner

Abstract

Sclerostin, the protein product of the Sost gene, is a potent inhibitor of bone formation. Among bone cells, sclerostin is found nearly exclusively in the osteocytes, the cell type that historically has been implicated in sensing and initiating mechanical signaling. The recent discovery of the antagonistic effects of sclerostin on Lrp5 receptor signaling, a crucial mediator of skeletal mechanotransduction, provides a potential mechanism for the osteocytes to control mechanotransduction, by adjusting their sclerostin (Wnt inhibitory) signal output to modulate Wnt signaling in the effector cell population. We investigated the mechanoregulation of Sost and sclerostin under enhanced (ulnar loading) and reduced (hindlimb unloading) loading conditions. Sost transcripts and sclerostin protein levels were dramatically reduced by ulnar loading. Portions of the ulnar cortex receiving a greater strain stimulus were associated with a greater reduction in Sost staining intensity and sclerostin-positive osteocytes (revealed via in situ hybridization and immunohistochemistry, respectively) than were lower strain portions of the tissue. Hindlimb unloading yielded a significant increase in Sost expression in the tibia. Modulation of sclerostin levels appears to be a finely tuned mechanism by which osteocytes coordinate regional and local osteogenesis in response to increased mechanical stimulation, perhaps via releasing the local inhibition of Wnt/Lrp5 signaling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。