Transcriptomic analysis of feeder-free culture system for maintaining naïve-state pluripotency in human pluripotent stem cells

无饲养层培养系统维持人类多能干细胞幼稚状态多能性的转录组分析

阅读:6
作者:Wataru Isono, Tomoyuki Kawasaki, Justin K Ichida, Kazunori Nagasaka, Osamu Hiraike, Akihiro Umezawa, Hidenori Akutsu

Background

Human pluripotent stem cells (hPSCs) such as embryonic stem cells (ESCs) and induced pluripotent stem cells (PSCs) have the capacity of self-renewal and multilineage differentiation in vitro. Conventional hPSCs, which are in a primed state, can produce various types of differentiated cells. However, the variability in their degree of pluripotency and differentiation propensities, which is influenced by the inductive

Conclusions

The naive hPSCs under feeder-free conditions could ensure supply of cells for various applications in regenerative medicine and disease modeling.

Methods

We recently developed a culture system for naïve hPSCs using an inhibitor of the NOTCH signaling pathway and a histone H3 methyltransferase disruptor. This culture system requires feeder cells for stably maintaining the naïve hPSCs. We aimed to develop a culture system for hPSCs that could maintain pluripotency under feeder-free conditions.

Results

We used two inhibitors to develop an alternative feeder-free culture system to obtain naïve hPSCs. The naïve cells underwent stable cellular proliferation and were positive for naïve stem cell markers; in addition, they could differentiate into the three germ layers. These feeder-free dome-shaped induced pluripotent stem cells (FFDS-iPSCs) have characteristics similar to that of naïve-like PSCs. Conclusions: The naive hPSCs under feeder-free conditions could ensure supply of cells for various applications in regenerative medicine and disease modeling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。