Susceptibility of podocytes to palmitic acid is regulated by stearoyl-CoA desaturases 1 and 2

足细胞对棕榈酸的敏感性受硬脂酰辅酶 A 去饱和酶 1 和 2 的调节

阅读:4
作者:Jonas Sieber, Astrid Weins, Kapil Kampe, Stefan Gruber, Maja T Lindenmeyer, Clemens D Cohen, Jana M Orellana, Peter Mundel, Andreas W Jehle

Abstract

Type 2 diabetes mellitus is characterized by dyslipidemia with elevated free fatty acids (FFAs). Loss of podocytes is a hallmark of diabetic nephropathy, and podocytes are highly susceptible to saturated FFAs but not to protective, monounsaturated FFAs. We report that patients with diabetic nephropathy develop alterations in glomerular gene expression of enzymes involved in fatty acid metabolism, including induction of stearoyl-CoA desaturase (SCD)-1, which converts saturated to monounsaturated FFAs. By IHC of human renal biopsy specimens, glomerular SCD-1 induction was observed in podocytes of patients with diabetic nephropathy. Functionally, the liver X receptor agonists TO901317 and GW3965, two known inducers of SCD, increased Scd-1 and Scd-2 expression in cultured podocytes and reduced palmitic acid-induced cell death. Similarly, overexpression of Scd-1 attenuated palmitic acid-induced cell death. The protective effect of TO901317 was associated with a reduction of endoplasmic reticulum stress. It was lost after gene silencing of Scd-1/-2, thereby confirming that the protective effect of TO901317 is mediated by Scd-1/-2. TO901317 also shifted palmitic acid-derived FFAs into biologically inactive triglycerides. In summary, SCD-1 up-regulation in diabetic nephropathy may be part of a protective mechanism against saturated FFA-derived toxic metabolites that drive endoplasmic reticulum stress and podocyte death.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。