Xanthotoxin, a novel inducer of platelet formation, promotes thrombocytopoiesis via IL-1R1 and MEK/ERK signaling

花椒毒素是一种新型血小板形成诱导剂,可通过 IL-1R1 和 MEK/ERK 信号促进血小板生成

阅读:5
作者:Jia Lai, Yueyue Li, Mei Ran, Qianqian Huang, Feihong Huang, Linjie Zhu, Yuesong Wu, Wenjun Zou, Xiang Xie, Yong Tang, Fei Yang, Anguo Wu, Guangbo Ge, Jianming Wu

Background

Thrombocytopenia is a common hematological disease caused by many factors. It usually complicates critical diseases and increases morbidity and mortality. The treatment of thrombocytopenia remains a great challenge in clinical practice, however, its treatment options are limited. In this study, the active monomer xanthotoxin (XAT) was screened out to explore its medicinal value and provide novel therapeutic strategies for the clinical treatment of thrombocytopenia.

Conclusion

XAT accelerates megakaryocyte differentiation and maturation to promote platelet production and recovery through triggering IL-1R1 and activating the MEK/ERK signaling pathway, providing a new pharmacotherapy strategy for thrombocytopenia.

Methods

The effects of XAT on megakaryocyte differentiation and maturation were detected by flow cytometry, Giemsa and phalloidin staining. RNA-seq identified differentially expressed genes and enriched pathways. The signaling pathway and transcription factors were verified through WB and immunofluorescence staining. Tg (cd41: eGFP) transgenic zebrafish and mice with thrombocytopenia were used to evaluate the biological activity of XAT on platelet formation and the related hematopoietic organ index in vivo.

Results

XAT promoted the differentiation and maturation of Meg-01 cells in vitro. Meanwhile, XAT could stimulate platelet formation in transgenic zebrafish and recover platelet production and function in irradiation-induced thrombocytopenia mice. Further RNA-seq prediction and WB verification revealed that XAT activates the IL-1R1 target and MEK/ERK signaling pathway, and upregulates the expression of transcription factors related to the hematopoietic lineage to promote megakaryocyte differentiation and platelet formation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。