Conclusion
These data suggest that exogenous HA has potential to protect the urogenital epithelia from UPEC infection via a two-pronged approach that involves the physical enhancement of the epithelial barrier and augmentation of its innate immune response.
Methods
RT4 bladder cells were preconditioned with high molecular weight HA (> 1500 kDa) at 2 mg mL-1 and challenged with UPEC to analyse barrier protection and bacterial adherence. Untreated and HA-preconditioned VK2 E6/E7 vaginal cells were challenged with E. coli flagellin (50 ng mL-1) to mimic bacterial challenge, and media analysed for lipocalin-2, human β-defensin 2 and interleukin-8 by ELISA. Experiments were repeated after siRNA knockdown of Toll-like receptors 2, 4 and 5, and CD44 to investigate signalling.
Results
Microscopic analyses showed reduced bacterial adherence and urothelial disruption with HA, suggesting that HA functions as a barrier protecting the epithelium from bacterial infection. Cells treated with HA and flagellin simultaneously produced more of the host antimicrobial peptide LCN2 and pro-inflammatory IL-8 (P < 0.05) compared to the no HA/flagellin challenges. Increased gene expression of DEFB4 (P < 0.05), but not the hBD2 peptide, was observed in the HA/flagellin-challenged cells.
