89Zr-PET imaging to predict tumor uptake of 177Lu-NNV003 anti-CD37 radioimmunotherapy in mouse models of B cell lymphoma

89Zr-PET 成像预测小鼠 B 细胞淋巴瘤模型中 177Lu-NNV003 抗 CD37 放射免疫疗法的肿瘤摄取

阅读:5
作者:Danique Giesen, Marjolijn N Lub-de Hooge, Marcel Nijland, Helen Heyerdahl, Jostein Dahle, Elisabeth G E de Vries, Martin Pool

Abstract

[177Lu]Lu-DOTA-NNV003, a radioimmunoconjugate targeting CD37, is developed as novel radioimmunotherapy (RIT) treatment for patients with B cell non-Hodgkin's lymphoma (NHL). Since patients are at risk for developing hematological toxicities due to CD37 expression on normal B cells, we aimed to develop 89Zr-labeled NNV003 for positron emission tomography (PET) imaging as a surrogate tool to predict [177Lu]Lu-DOTA-NNV003 RIT whole-body distribution and tumor uptake. NNV003 antibody was first radiolabeled with 89Zr. [89Zr]Zr-N-sucDf-NNV003 tumor uptake was evaluated by PET imaging of mice bearing human CD37-expressing REC1 B cell NHL or RAMOS Burkitt's lymphoma xenograft tumors followed by ex vivo analysis. Finally, CD37-targeting of [89Zr]Zr-N-sucDf-NNV003 and [177Lu]Lu-DOTA-NNV003 RIT were compared. [89Zr]Zr-N-sucDf-NNV003 accumulated in REC1 tumors over time, which was not observed for non-specific, 111In-labeled IgG control molecule. In RAMOS tumor-bearing mice, [89Zr]Zr-N-sucDf-NNV003 tumor uptake was higher than [111In]In-DTPA-IgG at all tested tracer protein doses (10 µg, 25 µg and 100 µg; P < 0.01), further confirming [89Zr]Zr-N-sucDf-NNV003 tumor uptake is CD37-mediated. [89Zr]Zr-N-sucDf-NNV003 and [177Lu]Lu-DOTA-NNV003 RIT showed similar ex vivo biodistribution and tumor uptake in the RAMOS tumor model. In conclusion, [89Zr]Zr-N-sucDf-NNV003 PET imaging can serve to accurately predict CD37-targeting of [177Lu]Lu-DOTA-NNV003. To enable clinical implementation, we established a good manufacturing practice (GMP)-compliant production process for [89Zr]Zr-N-sucDf-NNV003.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。