Sestrin2 Restricts Endothelial-to-Mesenchymal Transition Induced by Lipolysaccharide via Autophagy

Sestrin2 通过自噬限制脂多糖诱导的内皮细胞向间质细胞转化

阅读:3
作者:Rongrong Huang, Lei Liu, Kai Shen, Chengwei Duan, Zhenyu Fan

Conclusion

This study revealed that Sestrin2 inhibited endothelial inflammation and EndoMT via enhanced autophagy, which may provide a potential drug target for cerebrovascular inflammatory injury.

Methods

Lipolysaccharide (LPS) was administered intraperitoneally to mice several times to establish a chronic inflammatory model. A cellular inflammatory model was established by LPS in human brain microvascular endothelial cells (HBMECs). The mRNA expressions of inflammatory cytokines interleukin-1β (IL-1β) and IL-6 were detected by real-time polymerase chain reaction (PCR). Immunofluorescence staining of platelet endothelial cell adhesion molecule-1 (CD31) and alpha smooth muscle actin (α-SMA) was conducted to assess the level of EndoMT. The expression levels of Occludin, zona occludens protein 1 (ZO-1), Sestrin2, microtubule-associated protein1 light chain 3 (LC3) and inducible nitric oxide synthase (iNOS) were detected by western blotting.

Results

LPS treatment induced the downregulation of ZO-1 and Occludin, which was accompanied by the elevated expressions of iNOS, α-SMA, Sestrin2 and LC3-II in the mouse cortex and HBMECs. Mechanistically, the knockdown of Sestrin2 in HBMECs exacerbated the EndoMT induced by LPS treatment, while the overexpression of Sestrin2 inhibited this process. Moreover, the induction of autophagy by rapamycin rescued the EndoMT induced by Sestrin2 knockdown.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。