CISD2 inhibition overcomes resistance to sulfasalazine-induced ferroptotic cell death in head and neck cancer

CISD2 抑制可克服头颈癌对柳氮磺吡啶诱导的铁凋亡细胞死亡的抵抗作用

阅读:6
作者:Eun Hye Kim, Daiha Shin, Jaewang Lee, Ah Ra Jung, Jong-Lyel Roh

Abstract

Sulfasalazine has been repurposed to induce ferroptotic cancer cell death via inhibition of xc--cystine/glutamate antiporter (xCT). However, cancer cells are capable of developing mechanisms to evade cell death. Therefore, we sought to determine the molecular mechanisms underlying resistance to sulfasalazine-induced ferroptosis in head and neck cancer (HNC). The effects of sulfasalazine and pioglitazone were tested in various HNC cell lines. The effects of these drugs and inhibition and overexpression of CISD2 gene were determined by evaluating viability, cell death, lipid ROS production, mitochondrial iron, and mouse tumor xenograft models. SAS induced ferroptotic cell death in HNC at different levels. CISD2 expression showed an association between its expression and ferroptosis resistance. CISD2 overexpression conferred resistance to ferroptosis by sulfasalazine. Silencing CISD2 gene rendered resistant HNC cells susceptible to sulfasalazine-induced ferroptosis, with increased levels of lipid ROS and mitochondrial ferrous iron. Pioglitazone induced over-accumulation of mitochondrial iron and ROS and sensitized resistant HNC cells to sulfasalazine treatment in vitro and in a mouse tumor-xenograft model. CISD2 inhibition overcomes HNC resistance to ferroptotic cell death induced by sulfasalazine via increased accumulation of mitochondrial ferrous iron and lipid ROS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。