Endothelin-1 Overexpression Exaggerates Diabetes-Induced Endothelial Dysfunction by Altering Oxidative Stress

内皮素-1 过度表达通过改变氧化应激加剧糖尿病引起的内皮功能障碍

阅读:5
作者:Noureddine Idris-Khodja, Sofiane Ouerd, Muhammad Oneeb Rehman Mian, Jordan Gornitsky, Tlili Barhoumi, Pierre Paradis, Ernesto L Schiffrin

Background

Increased endothelin (ET)-1 expression causes endothelial dysfunction and oxidative stress. Plasma ET-1 is increased in patients with diabetes mellitus. Since endothelial dysfunction often precedes vascular complications in diabetes, we hypothesized that overexpression of ET-1 in the endothelium would exaggerate diabetes-induced endothelial dysfunction.

Conclusions

Increased expression of ET-1 exaggerates diabetes-induced endothelial dysfunction. This may be caused by decrease in eNOS expression, increase in vascular oxidative stress, and decrease in antioxidant capacity.

Methods

Diabetes was induced by streptozotocin treatment (55mg/kg/day, i.p.) for 5 days in 6-week-old male wild type (WT) mice and in mice overexpressing human ET-1 restricted to the endothelium (eET-1). Mice were studied 14 weeks later. Small mesenteric artery (MA) endothelial function and vascular remodeling by pressurized myography, reactive oxygen species (ROS) production by dihydroethidium staining and mRNA expression by reverse transcription/quantitative PCR were determined.

Results

Endothelium-dependent vasodilatory responses to acetylcholine of MA were reduced 24% by diabetes in WT ( P < 0.05), and further decreased by 12% in eET-1 ( P < 0.05). Diabetes decreased MA media/lumen in WT and eET-1 ( P < 0.05), whereas ET-1 overexpression increased MA media/lumen similarly in diabetic and nondiabetic WT mice ( P < 0.05). Vascular ROS production was increased 2-fold by diabetes in WT ( P < 0.05) and further augmented 1.7-fold in eET-1 ( P < 0.05). Diabetes reduced endothelial nitric oxide synthase (eNOS, Nos3 ) expression in eET-1 by 31% ( P < 0.05) but not in WT. Induction of diabetes caused a 52% ( P < 0.05) increase in superoxide dismutase 1 ( Sod1 ) and a 32% ( P < 0.05) increase in Sod2 expression in WT but not in eET-1. Conclusions: Increased expression of ET-1 exaggerates diabetes-induced endothelial dysfunction. This may be caused by decrease in eNOS expression, increase in vascular oxidative stress, and decrease in antioxidant capacity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。