Floxuridine supports UPS independent of germline signaling and proteostasis regulators via involvement of detoxification in C. elegans

氟尿苷通过参与秀丽隐杆线虫的解毒作用,支持不依赖于生殖系信号和蛋白质稳态调节剂的 UPS

阅读:7
作者:Abhishek Anil Dubey, Anwesha Sarkar, Karolina Milcz, Natalia A Szulc, Pankaj Thapa, Małgorzata Piechota, Remigiusz A Serwa, Wojciech Pokrzywa

Abstract

The ubiquitin-proteasome system (UPS) is critical for maintaining proteostasis, influencing stress resilience, lifespan, and thermal adaptability in organisms. In Caenorhabditis elegans, specific proteasome subunits and activators, such as RPN-6, PBS-6, and PSME-3, are associated with heat resistance, survival at cold (4°C), and enhanced longevity at moderate temperatures (15°C). Previously linked to improving proteostasis, we investigated the impact of sterility-inducing floxuridine (FUdR) on UPS functionality under proteasome dysfunction and its potential to improve cold survival. Our findings reveal that FUdR significantly enhances UPS activity and resilience during proteasome inhibition or subunit deficiency, supporting worms' normal lifespan and adaptation to cold. Importantly, FUdR effect on UPS activity occurs independently of major proteostasis regulators and does not rely on the germ cells proliferation or spermatogenesis. Instead, FUdR activates a distinct detoxification pathway that supports UPS function, with GST-24 appearing to be one of the factors contributing to the enhanced activity of the UPS upon knockdown of the SKN-1-mediated proteasome surveillance pathway. Our study highlights FUdR unique role in the UPS modulation and its crucial contribution to enhancing survival under low-temperature stress, providing new insights into its mechanisms of action and potential therapeutic applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。