Separations in poly(dimethylsiloxane) microchips coated with supported bilayer membranes

涂有支撑双层膜的聚(二甲基硅氧烷)微芯片中的分离

阅读:11
作者:K Scott Phillips, Sumith Kottegoda, Kyung Mo Kang, Christopher E Sims, Nancy L Allbritton

Abstract

Hybrid microchannels composed of poly(dimethylsiloxane) and glass were coated with supported bilayer membranes (SBMs) by the process of vesicle fusion. The electroosmotic mobility (mu(eo)) of zwitterionic, positively charged, and negatively charged phospholipid membranes was measured over a 4 h time to evaluate the stability of the coatings in an electric field. Coated microchips with a simple cross design were used to separate the fluorescent dyes fluorescein and Oregon Green. Migration time reproducibility was better than 5% RSD over 70 min of continuous separations. Separation of Oregon Green and fluorescein in channels coated with zwitterionic phosphatidylcholine (PC) membranes yielded efficiencies of 611,000 and 499,000 plates/m and a resolution of 2.4 within 2 s. Both zwitterionic and negatively charged membranes were used to separate peptide substrates from their phosphorylated analogues with efficiencies of 200,000-400,000 plates/m. Notably, separations of fluorescently labeled ABL substrate peptide from its phosphorylated counterpart were achieved using a high-salt physiological buffer with near-baseline resolution in 10 s. PC-coated devices were used to successfully separate enhanced green fluorescent protein (eGFP) from a fusion protein (eGFP-Crakl) with an efficiency of 358,000 and 278,000 plates/m respectively in less than 12 s. These SBM-based coatings may enable the separation of a broad range of analytes and may be ideal in biological applications for microfluidics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。