Neohesperidin alleviates the inhibitory effect of bisphenol A on the myogenic differentiation of umbilical cord mesenchymal stem cells via the IGF1R/AKT1/RHOA signaling pathway

新橙皮苷通过IGF1R/AKT1/RHOA信号通路减轻双酚A对脐带间充质干细胞成肌分化的抑制作用

阅读:20
作者:Jie Yang, Sen Qin, Nannan Sun, Yang Cai, Junling Li, Zhuhui Zhai, Jie An, Hejie Wang, Rong Du, Jian Qin

Abstract

Bisphenol A (BPA), a typical environmental endocrine disruptor, has raised concerns among researchers due to its toxicological effects. Whether neohesperidin (NEO) can intervene in the toxic effects of BPA remains unknown. This study aims to investigate the effects and mechanisms of NEO on the myogenic differentiation of umbilical cord-derived mesenchymal stem cells (UC-MSCs) exposed to BPA. Sheep UC-MSCs were isolated, characterized, and induced to myogenic differentiation. BPA decreased cell viability, cell migration, and the expressions of myogenic marker genes, leading to myogenic differentiation inhibition, which were reversed by NEO. Network pharmacology suggested the IGF1R/AKT1/RHOA pathway as potential targets of BPA and NEO regulating muscle development. Western blot results showed that NEO could reverse the down-regulation of the pathway proteins induced by BPA, and counteract the effects of picropodophyllin (PPP) or MK-2206 dihydrochloride (MK-2206) in the myogenic differentiation of sheep UC-MSCs. Additionally, the expression levels of (p-) IGF1R, AKT1, and RHOA were positively correlated. Taken together, the mechanisms of NEO resistance to BPA involved the IGF1R/AKT1/RHOA signaling pathway. These findings provide a scientific basis for alleviating BPA toxicity, preventing and treating muscular dysplasia, and promoting muscle damage repair.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。