TGF-β1 upregulates secreted protein acidic and rich in cysteine expression in human granulosa-lutein cells: a potential mechanism for the pathogenesis of ovarian hyperstimulation syndrome

TGF-β1上调人颗粒黄体细胞中富含半胱氨酸的酸性分泌蛋白的表达:卵巢过度刺激综合征发病的潜在机制

阅读:6
作者:Xuan Dang #, Lanlan Fang #, Qiongqiong Jia, Ze Wu, Yanjie Guo, Boqun Liu, Jung-Chien Cheng, Ying-Pu Sun

Background

Ovarian hyperstimulation syndrome (OHSS) is a serious complication during in vitro fertilization (IVF) treatment. The upregulation of ovarian transforming growth factor-beta 1 (TGF-β1) is involved in the development of OHSS. The secreted protein acidic and rich in cysteine (SPARC) is a secreted multifunctional matricellular glycoprotein. Although the regulatory effects of TGF-β1 on SPARC expression have been reported, whether TGF-β1 regulates SPARC expression in the human ovary remains unknown. In addition, the role of SPARC in the pathogenesis of OHSS is unclear.

Conclusions

By illustrating the potential physiological and pathological roles of TGF-β1 in the regulation of SPARC in hGL cells, our results may serve to improve current strategies used to treat clinical infertility and OHSS. Video Abstract.

Methods

A steroidogenic human ovarian granulosa-like tumor cell line, KGN, and primary culture of human granulosa-lutein (hGL) cells obtained from patients undergoing IVF treatment were used as experimental models. OHSS was induced in rats, and ovaries were collected. Follicular fluid samples were collected from 39 OHSS and 35 non-OHSS patients during oocyte retrieval. The underlying molecular mechanisms mediating the effect of TGF-β1 on SPARC expression were explored by a series of in vitro experiments.

Results

TGF-β1 upregulated SPARC expression in both KGN and hGL cells. The stimulatory effect of TGF-β1 on SPARC expression was mediated by SMAD3 but not SMAD2. The transcription factors, Snail and Slug, were induced in response to the TGF-β1 treatment. However, only Slug was required for the TGF-β1-induced SPARC expression. Conversely, we found that the knockdown of SPARC decreased Slug expression. Our results also revealed that SPARC was upregulated in the OHSS rat ovaries and in the follicular fluid of OHSS patients. Knockdown of SPARC attenuated the TGF-β1-stimulated expression of vascular endothelial growth factor (VEGF) and aromatase, two markers of OHSS. Moreover, the knockdown of SPARC reduced TGF-β1 signaling by downregulating SMAD4 expression. Conclusions: By illustrating the potential physiological and pathological roles of TGF-β1 in the regulation of SPARC in hGL cells, our results may serve to improve current strategies used to treat clinical infertility and OHSS. Video Abstract.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。