Dysregulation of stromal derived factor 1/CXCR4 axis in the megakaryocytic lineage in essential thrombocythemia

原发性血小板增多症中巨核细胞系基质衍生因子 1/CXCR4 轴失调

阅读:8
作者:Juan P Salim, Nora P Goette, Paola R Lev, Carlos D Chazarreta, Paula G Heller, Clarisa Alvarez, Felisa C Molinas, Rosana F Marta

Abstract

This study investigated the involvement of chemokines including stromal derived factor 1 (SDF-1), interleukin 8 (IL-8), growth-related oncogene alpha (GRO-alpha) and their receptors, CXCR4, CXCR2 and CXCR1 in essential thrombocythemia (ET), a chronic myeloproliferative disease characterized by megakaryocytic hyperplasia and high platelet count. Fifty-three ET patients were studied. Plasma levels of SDF-1, IL-8 and GRO-alpha, evaluated by enzyme-linked immunosorbent assay, and flow cytometric analysis of CXCR1 and CXCR2 on the platelet membrane, were found to be normal in ET patients. CXCR4 expression on platelet surface as well as platelet CXCR4 mRNA detected by real-time reverse transcription polymerase chain reaction, were decreased. Platelet CXCR4 internalization rate was normal while SDF-1-induced platelet aggregation was delayed, decreased or absent. Immunohistochemical staining revealed that megakaryocytes were also affected. CXCR4 decrease was not observed either in peripheral white blood cells or in circulating CD34(+) precursors. These results show that CXCR4 is decreased in the megakaryocytic lineage in ET, mainly due to a reduced CXCR4 production, and an abnormal platelet response to SDF-1. This report is the first to describe platelet and megakaryocytic CXCR4 deficiency in a human disease and the presence of this abnormality in a megakaryocytic-related illness highlights the important role of SDF-1/CXCR4 axis in platelet development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。