MicroRNA-22-3p Regulates the Apoptosis of Lens Epithelial Cells Through Targeting KLF6 in Diabetic Cataracts

MicroRNA-22-3p 通过靶向 KLF6 调控糖尿病性白内障晶状体上皮细胞凋亡

阅读:6
作者:Xin Yin, Ling Chen, Jiachao Shen, Zhaojing Bi, Chen Chen, Xinmei Zhao, Shujun Liu, Yuanbin Li

Conclusions

This study suggested that miR-22-3p could inhibit lens apoptosis by targeting KLF6 directly under high glucose condition. The miR-22-3p/KLF6 signal axis may provide novel insights into the pathogenesis of DC. Translational relevance: Differential expression of miR-22-3p may account for the pathogenesis of DC and lead to a new therapeutic strategy for DC.

Methods

General feature, fasting blood glucose, glycosylated hemoglobin, and type A1c (HbA1c) expression level of patients were collected. DC capsular tissues were obtained from patients and the lens cells (HLE-B3) exposed to different concentrations of glucose were used to simulate the model in vitro. Both mimic and inhibitor of miR-22-3p were transferred into HLE-B3 to up- and downregulate miR-22-3p expression, respectively. The cellular apoptosis was evaluated by quantitative real-time polymerase chain reaction (qRT-PCR), Western blot, and immunofluorescence. The downstream target gene of miR-22-3p was identified by dual luciferase reporter.

Purpose

The purpose of this study was to identify novel abnormally expressed microRNAs (miRNAs) and their downstream target in diabetic cataract (DC).

Results

In DC capsules and HLE-B3 under hyperglycemia, miR-22-3p showed a significant downward trend. The expression of BAX was upregulated and the BCL-2 was downregulated following high glucose. The expression of BAX was significantly down- or upregulated in HLE-B3 cells following transfection of mimic or inhibitor of miR-22-3p, respectively. Conversely, BCL-2 was significantly increased or decreased. Dual luciferase reporter assay showed that miR-22-3p directly targeted Krüppel Like Factor 6 (KLF6) to regulate cell apoptosis. In addition, the expression of KLF6 were significantly up- or downregulated following transfection of inhibitor or mimic of miR-22-3p. Conclusions: This study suggested that miR-22-3p could inhibit lens apoptosis by targeting KLF6 directly under high glucose condition. The miR-22-3p/KLF6 signal axis may provide novel insights into the pathogenesis of DC. Translational relevance: Differential expression of miR-22-3p may account for the pathogenesis of DC and lead to a new therapeutic strategy for DC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。