microRNA-23 inhibits inflammation to alleviate rheumatoid arthritis via regulating CXCL12

microRNA-23通过调节CXCL12抑制炎症以缓解类风湿关节炎

阅读:5
作者:Bo Gao, Guomin Sun, Yan Wang, Yaqin Geng, Lei Zhou, Xi Chen

Abstract

Rheumatoid arthritis (RA) is a common systemic, inflammatory and autoimmune disorder. MicroRNAs (miRs) are strongly associated with the initiation and progression of RA. However, the functions and mechanisms underlying miR-23 in RA are not completely understood. Therefore, the present study aimed to investigate the molecular mechanisms underlying miR-23 in RA. A bioinformatics tool (StarBase) and a wide range of experimental assays, including reverse transcription-quantitative PCR, western blotting, luciferase reporter assays and ELISAs, were performed to investigate the biological role of miR-23 in RA. The results indicated that miR-23 was downregulated and chemokine C-X-C motif ligand 12 (CXCL12) was upregulated in RA samples compared with healthy samples. Furthermore, miR-23 overexpression suppressed inflammation via reducing TNF-α, IL-1β and IL-8 expression levels compared with the NC mimic group. Regarding the underlying mechanism, compared with NC mimic, miR-23 mimic decreased CXCL12 mRNA expression by binding to its 3'-untranslated region. Additionally, CXCL12 overexpression reversed miR-23 mimic-mediated effects on inflammation. NF-κB signaling is associated with inflammation. Therefore, the present study indicated that CXCL12 promoted inflammation by activating NF-κB signaling. In conclusion, miR-23 inhibited inflammation to alleviate RA by regulating CXCL12 via the NF-κB signaling pathway, which may serve as a potential target for the diagnosis and treatment of RA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。