Proteomic Analysis of Cardioembolic and Large Artery Atherosclerotic Clots Using Reverse Phase Protein Array Technology Reveals Key Cellular Interactions Within Clot Microenvironments

使用反相蛋白阵列技术对心脏栓塞和大动脉粥样硬化血凝块进行蛋白质组学分析,揭示血凝块微环境内的关键细胞相互作用

阅读:4
作者:Mehdi Abbasi, Sean Fitzgerald, Jennifer Ayers-Ringler, Virginia Espina, Claudius Mueller, Sally Rucker, Ramanathan Kadirvel, David Kallmes, Waleed Brinjikji

Abstract

Thrombus characteristics are dependent on clot composition, but identification of the etiology based on histological analysis has proved inconclusive. Identification of proteomic signatures may help to differentiate between clots of different etiologies such as cardioembolic, large artery atherosclerotic, and other known etiologies, information that could enhance an individualized medicine approach to secondary stroke prevention. In this study, total protein extracts from cardioembolic (n=25) and large artery atherosclerotic (n=23) thrombus specimens were arrayed in quadruplicate on nitrocellulose slides and immunostained for 31 proteins using a Dako Autostainer (Agilent Technologies, Inc., Santa Clara, USA). We quantified 31 proteins involved in platelet and/or endothelial function, inflammation, oxidative stress, and metabolism. Pathway analysis showed more heterogeneity and protein network interactions in the cardioembolic clots but no specific correlations with clot etiology. Reverse-phase protein arrays are a powerful tool for assessing cellular interactions within the clot microenvironment and may enhance understanding of clot formation and origination. This tool could be further explored to help in identifying stroke etiology in large vessel occlusion patients with embolic stroke of an undetermined source.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。