Connexin 43 C-terminus directly inhibits the hyperphosphorylation of Akt/ERK through protein-protein interactions in glioblastoma

连接蛋白 43 C 端通过胶质母细胞瘤中的蛋白质-蛋白质相互作用直接抑制 Akt/ERK 的过度磷酸化

阅读:6
作者:Jing-Ya Kuang, Yu-Feng Guo, Ying Chen, Jun Wang, Jiang-Jie Duan, Xiao-Li He, Lin Li, Shi-Cang Yu, Xiu-Wu Bian

Abstract

Although the deregulation of epidermal growth factor receptor (EGFR) is one of the most common molecular mechanisms of glioblastoma (GBM) pathogenesis, the efficacy of anti-EGFR therapy is limited. Additionally, response to anti-EGFR therapy is not solely dependent on EGFR expression and is more promising in patients with reduced activity of EGFR downstream signaling pathways. Thus, there is considerable interest in identifying the compensatory regulatory factors of the EGFR signaling pathway to improve the efficacy of anti-EGFR therapies for GBM. In this study, we confirmed the low efficacy of EGFR inhibitors in GBM patients by meta-analysis. We then identified a negative correlation between connexin 43 (Cx43) expression and Akt/ERK activation, which was caused by the direct interactions between Akt/ERK and Cx43. By comparing the interactions between Akt/ERK and Cx43 using a series of truncated and mutated Cx43 variants, we revealed that the residues T286/A305/Q308/Y313 and S272/S273 at the carboxy terminus of Cx43 are critical for its binding with Akt and ERK, respectively. In addition, Kaplan-Meier survival analysis using data from The Cancer Genome Atlas datasets indicated that the expression of Cx43 significantly improved the prognosis of GBM patients who express EGFR. Together, our results suggested that Cx43 acts as an inhibitory regulator of the activation of growth factor receptor downstream signaling pathways, indicating the potential of Cx43 as a marker for predicting the efficacy of EGFR inhibitor treatments for GBM. Targeting the interaction between the carboxy terminus of Cx43 and Akt/ERK could be an effective therapeutic strategy against GBM.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。