The Endothelial Barrier Is not Rate-limiting to Insulin Action in the Myocardium of Male Mice

内皮屏障不会限制雄性小鼠心肌的胰岛素作用

阅读:6
作者:Rajiv Sanwal, Negar Khosraviani, Suzanne L Advani, Andrew Advani, Warren L Lee

Abstract

To act on tissues, circulating insulin must perfuse the relevant organ and then leave the bloodstream by crossing the endothelium-a process known as insulin delivery. It has been postulated that the continuous endothelium is a rate-limiting barrier to insulin delivery but existing data are contradictory. This conflict is in part due to the limitations of current models, including the inability to maintain a constant blood pressure in animals and the absence of shear stress in cultured cells. We developed a murine cardiac ex vivo perfusion model that delivers insulin to the heart in situ at a constant flow. We hypothesized that if the endothelial barrier were rate-limiting to insulin delivery, increasing endothelial permeability would accelerate insulin action. The kinetics of myocardial insulin action were determined in the presence or absence of agents that increased endothelial permeability. Permeability was measured using Evans Blue, which binds with high affinity to albumin. During our experiments, the myocardium remained sensitive to insulin and the vasculature retained barrier integrity. Perfusion with insulin induced Akt phosphorylation in myocytes but not in the endothelium. Infusion of platelet-activating factor or vascular endothelial growth factor significantly increased permeability to albumin without altering insulin action. Amiloride, an inhibitor of fluid-phase uptake, also did not alter insulin action. These data suggest that the endothelial barrier is not rate limiting to insulin's action in the heart; its passage out of the coronary circulation is consistent with diffusion or convection. Modulation of transendothelial transport to overcome insulin resistance is unlikely to be a viable therapeutic strategy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。