Diaphragmatic Activity and Respiratory Function Following C3 or C6 Unilateral Spinal Cord Contusion in Mice

小鼠 C3 或 C6 单侧脊髓挫伤后的膈肌活动和呼吸功能

阅读:6
作者:Afaf Bajjig, Pauline Michel-Flutot, Tiffany Migevent, Florence Cayetanot, Laurence Bodineau, Stéphane Vinit, Isabelle Vivodtzev

Abstract

The majority of spinal cord injuries (SCIs) are cervical (cSCI), leading to a marked reduction in respiratory capacity. We aimed to investigate the effect of hemicontusion models of cSCI on both diaphragm activity and respiratory function to serve as preclinical models of cervical SCI. Since phrenic motoneuron pools are located at the C3-C5 spinal level, we investigated two models of preclinical cSCI mimicking human forms of injury, namely, one above (C3 hemicontusion-C3HC) and one below phrenic motoneuron pools (C6HC) in wild-type swiss OF-1 mice, and we compared their effects on respiratory function using whole-body plethysmography and on diaphragm activity using electromyography (EMG). At 7 days post-surgery, both C3HC and C6HC damaged spinal cord integrity above the lesion level, suggesting that C6HC potentially alters C5 motoneurons. Although both models led to decreased diaphragmatic EMG activity in the injured hemidiaphragm compared to the intact one (-46% and -26% in C3HC and C6HC, respectively, both p = 0.02), only C3HC led to a significant reduction in tidal volume and minute ventilation compared to sham surgery (-25% and -20% vs. baseline). Moreover, changes in EMG amplitude between respiratory bursts were observed post-C3HC, reflecting a change in phrenic motoneuronal excitability. Hence, C3HC and C6HC models induced alteration in respiratory function proportionally to injury level, and the C3HC model is a more appropriate model for interventional studies aiming to restore respiratory function in cSCI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。