Surface hydroxide promotes CO2 electrolysis to ethylene in acidic conditions

表面氢氧化物在酸性条件下促进二氧化碳电解成乙烯

阅读:7
作者:Yufei Cao #, Zhu Chen #, Peihao Li, Adnan Ozden, Pengfei Ou, Weiyan Ni, Jehad Abed, Erfan Shirzadi, Jinqiang Zhang, David Sinton, Jun Ge, Edward H Sargent

Abstract

Performing CO2 reduction in acidic conditions enables high single-pass CO2 conversion efficiency. However, a faster kinetics of the hydrogen evolution reaction compared to CO2 reduction limits the selectivity toward multicarbon products. Prior studies have shown that adsorbed hydroxide on the Cu surface promotes CO2 reduction in neutral and alkaline conditions. We posited that limited adsorbed hydroxide species in acidic CO2 reduction could contribute to a low selectivity to multicarbon products. Here we report an electrodeposited Cu catalyst that suppresses hydrogen formation and promotes selective CO2 reduction in acidic conditions. Using in situ time-resolved Raman spectroscopy, we show that a high concentration of CO and OH on the catalyst surface promotes C-C coupling, a finding that we correlate with evidence of increased CO residence time. The optimized electrodeposited Cu catalyst achieves a 60% faradaic efficiency for ethylene and 90% for multicarbon products. When deployed in a slim flow cell, the catalyst attains a 20% energy efficiency to ethylene, and 30% to multicarbon products.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。