Changes in sub-cellular localisation of trophoblast and inner cell mass specific transcription factors during bovine preimplantation development

牛植入前发育过程中滋养层和内细胞团特异性转录因子亚细胞定位的变化

阅读:7
作者:Zofia E Madeja, Jaroslaw Sosnowski, Kamila Hryniewicz, Ewelina Warzych, Piotr Pawlak, Natalia Rozwadowska, Berenika Plusa, Dorota Lechniak

Background

Preimplantation bovine development is emerging as an attractive experimental model, yet little is known about the mechanisms underlying trophoblast (TE)/inner cell mass (ICM) segregation in cattle. To gain an insight into these processes we have studied protein and mRNA distribution during the crucial stages of bovine development. Protein distribution of lineage specific markers OCT4, NANOG, CDX2 were analysed in 5-cell, 8-16 cell, morula and blastocyst stage embryos. ICM/TE mRNA levels were compared in hatched blastocysts and included: OCT4, NANOG, FN-1, KLF4, c-MYC, REX1, CDX2, KRT-18 and GATA6.

Conclusions

Cell fate specification in cattle become evident earlier than presently anticipated - around the time of bovine embryonic genome activation. There is an intriguing possibility that for proper lineage determination certain transcription factors (such as CDX2) may need to occupy specific regions of chromatin prior to its activation in the interphase nucleus. Our observation suggests a possible role of CDX2 in the process of epigenetic regulation of embryonic cell fate.

Results

At the mRNA level the observed distribution patterns agree with the mouse model. CDX2 and OCT4 proteins were first detected in 5-cell stage embryos. NANOG appeared at the morula stage and was located in the cytoplasm forming characteristic rings around the nuclei. Changes in sub-cellular localisation of OCT4, NANOG and CDX2 were noted from the 8-16 cell onwards. CDX2 initially co-localised with OCT4, but at the blastocyst stage a clear lineage segregation could be observed. Interestingly, we have observed in a small proportion of embryos (2%) that CDX2 immunolabelling overlapped with mitotic chromosomes. Conclusions: Cell fate specification in cattle become evident earlier than presently anticipated - around the time of bovine embryonic genome activation. There is an intriguing possibility that for proper lineage determination certain transcription factors (such as CDX2) may need to occupy specific regions of chromatin prior to its activation in the interphase nucleus. Our observation suggests a possible role of CDX2 in the process of epigenetic regulation of embryonic cell fate.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。