Wip1 regulates Smad4 phosphorylation and inhibits TGF-β signaling

Wip1 调节 Smad4 磷酸化并抑制 TGF-β 信号传导

阅读:6
作者:Dong-Seok Park, Gang-Ho Yoon, Eun-Young Kim, Taehyeong Lee, Kyuhee Kim, Peter Cw Lee, Eun-Ju Chang, Sun-Cheol Choi

Abstract

The tumor suppressor Smad4, a key mediator of the TGF-β/BMP pathways, is essential for development and tissue homeostasis. Phosphorylation of Smad4 in its linker region catalyzed by the mitogen-activated protein kinase (MAPK) plays a pivotal role in regulating its transcriptional activity and stability. In contrast, roles of Smad4 dephosphorylation as a control mechanism of TGF-β/BMP signaling and the phosphatases responsible for its dephosphorylation remain so far elusive. Here, we identify Wip1 as a Smad4 phosphatase. Wip1 selectively binds and dephosphorylates Smad4 at Thr277, a key MAPK phosphorylation site, thereby regulating its nuclear accumulation and half-life. In Xenopus embryos, Wip1 limits mesoderm formation and favors neural induction by inhibiting TGF-β/BMP signals. Wip1 restrains TGF-β-induced growth arrest, migration, and invasion in human cells and enhances the tumorigenicity of cancer cells by repressing the antimitogenic activity of Smad4. We propose that Wip1-dependent dephosphorylation of Smad4 is critical for the regulation of TGF-β signaling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。