Development, Characterization and Electromechanical Actuation Behavior of Ionic Polymer Metal Composite Actuator based on Sulfonated Poly(1,4-phenylene ether-ether-sulfone)/Carbon Nanotubes

基于磺化聚苯醚醚砜/碳纳米管的离子聚合物金属复合驱动器的开发、表征及机电驱动行为

阅读:6
作者:Ajahar Khan, Ravi Kant Jain, Priyabrata Banerjee, Bhaskar Ghosh, Inamuddin, Abdullah M Asiri

Abstract

This paper presents the development of new cost-effective hybrid-type sulfonated poly(1,4-phenylene ether-ether-sulfone) (SPEES) and functionalized single-walled carbon nanotubes (SWNT) based actuators produced by the film-casting method followed by chemical reduction of Pt ions as electrodes. The preparation of SPEES was investigated in details and sulfonation of polymer was characterized by ion exchange capacity (IEC), Fourier-transform infrared (FTIR) and degree of sulfonation measurements. SPEES having degree of sulfonation of 126% was blended with SWNT and used to fabricate IPMC actuator. The chemical composition and detailed structure of SPEES-SWNT ionic polymer membranes were confirmed by FTIR, EDX and transmittance electron microscopy (TEM) analysis. Scanning electron microscopy (SEM) micrographs revealed the homogeneously distributed layers of Pt electrodes on the surfaces of IPMC membrane. The electrochemical and electromechanical properties of SPEES-SWNT-Pt-based IPMC actuator shows a better actuation performance than conventional IPMC actuators in terms of higher IEC, Proton conductivity, higher current density, electrochemical impedance spectroscopy (EIS), and large bending deflection. The robust, flexible and mechanically strong membranes prepared by the synergistic combination of SPEES and SWNT may have considerable potential as actuator materials for robotic and biomimetic applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。