Suppression of α-methylacyl-coenzyme A racemase by miR200c inhibits prostate adenocarcinoma cell proliferation and migration

miR200c 抑制 α-甲基酰基辅酶 A 消旋酶可抑制前列腺腺癌细胞增殖和迁移

阅读:5
作者:Hanbing Xie, Ling Nie, Mengni Zhang, Zhengzheng Su, Xueqin Chen, Miao Xu, Jing Gong, Ni Chen, Qiao Zhou

Abstract

Overexpression of α-methylacyl-coenzyme A racemase (AMACR/P504S) is a major abnormality that has been observed in prostate cancer, whereas microRNA (miRNA/miR) 200c, is downregulated. The aim of the present study was to explore whether miR200c was able to exert any regulatory effects on AMACR. To meet this aim, bioinformatics analysis was performed to identify potential binding sites for miR200c in the 3'-untranslated region (3'-UTR) of AMACR. Recombinant adenoviral and dual reporter gene assays were designed to examine the binding of miR200c to the potential seed sequences in the AMACR 3'-UTR. Conventional reverse transcription (RT)-PCR, RT-quantitative (q)PCR and western blotting were also used to examine the regulatory effects of miR200c on AMACR at the mRNA and protein levels. Furthermore, Cell Counting Kit-8, wound healing and Transwell assays were performed to investigate the biological effects of miR200c-AMACR deregulation on prostate cancer cell proliferation, migration and invasion. It was revealed that miR200c post-transcriptionally suppressed AMACR expression by interacting with the 90-97 nucleotide sequence of the AMACR mRNA 3'-UTR. Artificial overexpression of miR200c significantly downregulated the mRNA and protein levels of AMACR in DU145 and PC-3 prostate cancer cells. Knockdown of AMACR by RNA interference, or overexpression of miR200c by recombinant adenoviral Ad-miR200c, inhibited prostate cancer cell proliferation, migration and invasiveness. Taken together, the results of the present study revealed that miR200c may suppress the AMACR expression level post-transcriptionally. The results also indicate that perturbation of the miR200c-AMACR regulatory mechanism may be involved in prostate carcinogenesis and that this may be exploited in future therapeutic approaches to prostate cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。