Significance
This article presents, for the first time, evidence of the in vivo anti-fibrotic effect of zwitterionic hydrogel thin films photografted to polydimethylsiloxane (PDMS) and human cochlear implant arrays. The hydrogel coating shows no evidence of degradation or loss of function after long-term implantation. The coating process enables full coverage of the electrode array. The coating reduces fibrotic capsule thickness 50-70% over a broad range of cross-link densities for implantations from six weeks to one year.
Statement of significance
This article presents, for the first time, evidence of the in vivo anti-fibrotic effect of zwitterionic hydrogel thin films photografted to polydimethylsiloxane (PDMS) and human cochlear implant arrays. The hydrogel coating shows no evidence of degradation or loss of function after long-term implantation. The coating process enables full coverage of the electrode array. The coating reduces fibrotic capsule thickness 50-70% over a broad range of cross-link densities for implantations from six weeks to one year.
