Exploiting differential surface display of chondroitin sulfate variants for directing neuronal outgrowth

利用硫酸软骨素变体的差异表面展示来指导神经元生长

阅读:5
作者:Vimal P Swarup, Tony W Hsiao, Jianxing Zhang, Glenn D Prestwich, Balagurunathan Kuberan, Vladimir Hlady

Abstract

Chondroitin sulfate (CS) proteoglycans (CSPGs) are known to be primary inhibitors of neuronal regeneration at scar sites. However, a variety of CSPGs are also involved in neuronal growth and guidance during other physiological stages. Sulfation patterns of CS chains influence their interactions with various growth factors in the central nervous system (CNS), thus influencing neuronal growth, inhibition, and pathfinding. This report demonstrates the use of differentially sulfated CS chains for neuronal navigation. Surface-immobilized patterns of CS glycosaminoglycan chains were used to determine neuronal preference toward specific sulfations of five CS variants: CS-A, CS-B (dermatan sulfate), CS-C, CS-D, and CS-E. Neurons preferred CS-A, CS-B, and CS-E and avoided CS-C containing lanes. In addition, significant alignment of neurites was observed using underlying lanes containing CS-A, CS-B, and CS-E chains. To utilize differential preference of neurons toward the CS variants, a binary combinations of CS chains were created by backfilling a neuro-preferred CS variant between the microcontact printed lanes of CS-C stripes, which are avoided by neurons. The neuronal outgrowth results demonstrate for the first time that a combination of sulfation variants of CS chains without any protein component of CSPG is sufficient for directing neuronal outgrowth. Biomaterials with surface immobilized GAG chains could find numerous applications as bridging devices for tackling CNS injuries where directional growth of neurons is critical for recovery.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。