miR-26b inhibits isoproterenol-induced cardiac fibrosis via the Keap1/Nrf2 signaling pathway

miR-26b 通过 Keap1/Nrf2 信号通路抑制异丙肾上腺素诱导的心脏纤维化

阅读:9
作者:Shaohua Xiang, Jing Li, Zhengfu Zhang

Abstract

A critical event in cardiac fibrosis is the transformation of cardiac fibroblasts (CFs) into myofibroblasts. MicroRNAs (miRNAs) have been reported to be critical regulators in the development of cardiac fibrosis. However, the underlying molecular mechanisms of action of miRNA (miR)-26b in cardiac fibrosis have not yet been extensively studied. In the present study, the expression levels of miR-26b were downregulated in isoproterenol (ISO)-treated cardiac tissues and CFs. Moreover, miR-26b overexpression inhibited the cell viability of ISO-treated CFs and decreased the protein levels of collagen I and α-smooth muscle actin (α-SMA). Furthermore, bioinformatics analysis and dual luciferase reporter assays indicated that Kelch-like ECH-associated protein 1 (Keap1) was the target of miR-26b, and that its expression levels were decreased in miR-26b-treated cells. In addition, Keap1 overexpression reversed the inhibitory effects of miR-26b on ISO-induced cardiac fibrosis, as demonstrated by cell viability, and the upregulation of collagen I and α-SMA expression levels. Furthermore, inhibition of Keap1 expression led to the activation of nuclear factor erythroid 2-related factor 2 (Nrf2), which induced the transcriptional activation of antioxidant/detoxifying proteins in order to protect against cardiac fibrosis. Taken together, the data demonstrated that miR-26b attenuated ISO-induced cardiac fibrosis via the Keap-mediated activation of Nrf2.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。