Galvanotactic Migration of Glioblastoma and Brain Metastases Cells

胶质母细胞瘤和脑转移瘤细胞的趋电迁移

阅读:6
作者:Falko Lange, Jakob Venus, Daria Shams Esfand Abady, Katrin Porath, Anne Einsle, Tina Sellmann, Valentin Neubert, Gesine Reichart, Michael Linnebacher, Rüdiger Köhling, Timo Kirschstein

Abstract

Galvanotaxis, the migration along direct current electrical fields, may contribute to the invasion of brain cancer cells in the tumor-surrounding tissue. We hypothesized that pharmacological perturbation of the epidermal growth factor (EGF) receptor and downstream phosphatidylinositol 3-kinase (PI3K)/AKT pathway prevent galvanotactic migration. In our study, patient-derived glioblastoma and brain metastases cells were exposed to direct current electrical field conditions. Velocity and direction of migration were estimated. To determine the effects of EGF receptor antagonist afatinib and AKT inhibitor capivasertib, assays of cell proliferation, apoptosis and immunoblot analyses were performed. Both inhibitors attenuated cell proliferation in a dose-dependent manner and induced apoptosis. We found that most of the glioblastoma cells migrated preferentially in an anodal direction, while brain metastases cells were unaffected by direct current stimulations. Afatinib presented only a mild attenuation of galvanotaxis. In contrast, capivasertib abolished the migration of glioblastoma cells without genetic alterations in the PI3K/AKT pathway, but not in cells harboring PTEN mutation. In these cells, an increase in the activation of ERK1/2 may in part substitute the inhibition of the AKT pathway. Overall, our data demonstrate that glioblastoma cells migrate in the electrical field and the PI3K/AKT pathway was found to be highly involved in galvanotaxis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。