Low-Temperature Multiple Micro-Dispensing on Microneedles for Accurate Transcutaneous Smallpox Vaccination

微针低温多次微量注射可实现精准经皮天花疫苗接种

阅读:5
作者:Sang-Gu Yim, Yun-Ho Hwang, Seonyeong An, Keum-Yong Seong, Seo-Yeon Kim, Semin Kim, Hyeseon Lee, Kang-Oh Lee, Mi-Young Kim, Dokeun Kim, You-Jin Kim, Seung-Yun Yang

Abstract

Smallpox is an acute contagious disease caused by the variola virus. According to WHO guidelines, the smallpox vaccine is administrated by scarification into the epidermis using a bifurcated needle moistened with a vaccine solution. However, this invasive vaccination method involving multiple skin punctures requires a special technique to inoculate, as well as a cold chain for storage and distribution of vaccine solutions containing a live virus. Here, we report a transcutaneous smallpox vaccination using a live vaccinia-coated microneedle (MN) patch prepared by a low-temperature multiple nanoliter-level dispensing system, enabling accurate transdermal delivery of live vaccines and maintenance of bioactivity. The live vaccinia in hyaluronic acid (HA) solutions was selectively coated on the solid MN tips, and the coating amount of the vaccine was precisely controlled through a programmed multiple dispensing process with high accuracy under low temperature conditions (2-8 °C) for smallpox vaccination. Inoculation of mice (BALB/C mouse) with the MN patch coated with the second-generation smallpox vaccine increased the neutralizing antibody titer and T cell immune response. Interestingly, the live vaccine-coated MN patch maintained viral titers at -20 °C for 4 weeks and elevated temperature (37 °C) for 1 week, highlighting improved storage stability of the live virus formulated into coated MN patches. This coated MN platform using contact dispensing technique provides a simple and effective method for smallpox vaccination.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。