Detection of the Cell Cycle-Regulated Negative Feedback Phosphorylation of Mitogen-Activated Protein Kinases in Breast Carcinoma using Nanofluidic Proteomics

利用纳流控蛋白质组学检测乳腺癌中细胞周期调节的丝裂原活化蛋白激酶的负反馈磷酸化

阅读:4
作者:Yasuyo Urasaki, Ronald R Fiscus, Thuc T Le

Abstract

Mitogen-activated protein kinases (MAPKs) play an important role in the regulation of cell proliferation, oncogenic transformation, and drug resistance. This study examined the capability of nanofluidic proteomics to identify aberrations in the MAPK signaling cascade, monitor its drug response, and guide the rational design of intervention strategies. Specifically, the protein post-translational modification (PTM) profiles of MEK1, MEK2, and ERK1/2 were measured in breast carcinoma and breast cancer cell lines. Nanofluidic proteomics revealed hyper-phosphorylation of MAPKs in breast carcinoma and breast cancer cells treated with kinase inhibitors that interfere with cell cycle regulation, such as dinaciclib, an inhibitor of cyclin-dependent kinases, and rigosertib, an inhibitor of polo-like kinase 1. A pMEK1 (Thr286) phosphor-isoform, which serves as a biomarker of cell cycle-regulated negative feedback phosphorylation in breast cancer cells, was detected in breast carcinoma. Inhibition of the MAPK pathway with dabrafenib, a B-Raf inhibitor, or trametinib, a MEK1/2 inhibitor, suppressed both the positively regulated phosphorylation of MAPKs and the negatively regulated phosphorylation of MEK1. Interestingly, the combinations of dabrafenib and rigosertib or trametinib and rigosertib permitted the suppression of positively regulated MAPK phosphorylation together with the promotion of negatively regulated MEK1 phosphorylation. The effectiveness of protein PTM-guided drug combinations for inhibition of the MAPK pathway remains to be experimentally tested. Via protein PTM profiling, nanofluidic proteomics provides a robust means to detect anomalies in the MAPK signaling cascade, monitor its drug response, and guide the possible design of drug combinations for MAPK pathway-focused targeting.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。