Induction of Autophagy by Vasicinone Protects Neural Cells from Mitochondrial Dysfunction and Attenuates Paraquat-Mediated Parkinson's Disease Associated α-Synuclein Levels

瓦西西酮诱导自噬可保护神经细胞免受线粒体功能障碍的影响,并减弱百草枯介导的帕金森病相关的 α-突触核蛋白水平

阅读:5
作者:Chih-Yang Huang, Kalaiselvi Sivalingam, Marthandam Asokan Shibu, Po-Hsiang Liao, Tsung-Jung Ho, Wei-Wen Kuo, Ray-Jade Chen, Cecilia-Hsuan Day, Vijaya Padma Viswanadha, Da-Tong Ju

Abstract

Mitochondrial dysfunction and disturbed mitochondrial dynamics were found to be common phenomena in the pathogenesis of Parkinson's disease (PD). Vasicinone is a quinazoline alkaloid from Adhatoda vasica. Here, we investigated the autophagy/mitophagy-enhancing effect of vasicinone and explored its neuroprotective mechanism in paraquat-mimic PD modal in SH-SY5Y cells. Vasicinone rescued the paraquat-induced loss of cell viability and mitochondrial membrane potential. Subsequently, the accumulation of mitochondrial reactive oxygen species (ROS) was balanced by an increase in the expression of antioxidant enzymes. Furthermore, vasicinone restored paraquat-impaired autophagy and mitophagy regulators DJ-1, PINK-1 and Parkin in SH-SY5Y cells. The vasicinone mediated autophagy pathways were abrogated by treatment with the autophagy inhibitor 3-MA, which lead to increases α-synuclein accumulation and decreased the expression of p-ULK and ATG proteins and the autophagy marker LC3-II compared to that observed without 3-MA treatment. These results demonstrated that vasicinone exerted neuroprotective effects by upregulating autophagy and PINK-1/Parkin mediated mitophagy in SH-SY5Y cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。