Conclusions
Intestinal microflora provides novel insight into the mechanisms of GP that may be used to treat ALF and intestinal microflora dysbiosis.
Methods
KM mice were orally administered with alcohol (56%, 6 mL/kg) for 30 d to establish ALF model, and divided into four groups together with control group (water only). Hugan tablet (60 mg/kg) or GP (250 and 150 mg/kg) were given 5 h after each dose of alcohol. Biochemical markers in serum and liver homogenate were determined with kits. Alteration of intestinal microflora, and protein expressions of TGF-β1, TNF-α and decorin were detected.
Objective
To investigate the effects of garlic polysaccharide (GP) on ALF and intestinal microflora in mice. Materials and
Results
In GP-H group, ALT and AST decreased to 18.85 ± 4.71 U/L and 40.84 ± 7.89 U/L. MDA, TC, TG and LDL-C decreased to 2.32 ± 0.86 mmol/mg, 0.21 ± 0.12 mmol/L, 0.96 ± 0.31 mmol/L and 0.084 ± 0.027 mmol/L. SOD, GSH-Px and GSH increased to 118.32 ± 16.32 U/mg, 523.72 ± 64.20 U/mg and 0.56 ± 0.05 mg/g. Ratios of TGF-β1 and TNF-α decreased to 0.608 ± 0.170 and 1.057 ± 0.058, decorin increased to 2.182 ± 0.129. Lachnospiraceae and Lactobacillus increased, Facklamia and Firmicutes decreased with GP pretreatment.
