Evodiamine impairs HIF1A histone lactylation to inhibit Sema3A-mediated angiogenesis and PD-L1 by inducing ferroptosis in prostate cancer

吴茱萸碱通过诱导前列腺癌铁死亡,损害 HIF1A 组蛋白乳酸化,从而抑制 Sema3A 介导的血管生成和 PD-L1

阅读:5
作者:Ying Yu, Xing Huang, Chaoqi Liang, Peng Zhang

Abstract

Prostate cancer (PCa) is among the most commonly diagnosed solid cancers in male adults. However, most anti-angiogenic therapies and immunotherapies fail to achieve durable remission in advanced PCa. Integrative analysis indicated that Sema3A was negatively correlated with the pathological malignancy and was involved in angiogenesis, cell adhesion, and immune infiltrates in PCa. Sema3A significantly inhibited vascular endothelial growth factor (VEGFA)-induced colony formation, cell proliferation, and PD-L1 expression in PCa cells. Network pharmacological analysis demonstrated that evodiamine, a natural alkaloid compound derived from Evodiae fructus fruits, might regulate Sema3A, lipid metabolism, and monocarboxylic acid transport signaling of PCa. Evodiamine evidently inhibited PCa cell viability in a time-dose-dependent manner. Furthermore, evodiamine impaired angiogenesis by increasing Sema3A expression, and induced ferroptosis by reducing glutathione peroxidase 4 (GPX4) expression, which could be reversed by the ferroptosis blocker ferrostatin-1. Lactate treatment increased hypoxia-inducible factor (HIF)-1α and PD-L1 expressions while restricting Sema3A expression in PCa cells, which could be reversed by silencing monocarboxylate transporter 4 (MCT4) expression. Moreover, evodiamine markedly blocked lactate-induced angiogenesis by restricting histone lactylation and expression of HIF1A in PCa cells, further enhancing Sema3A transcription while inhibiting that of PD-L1. In vivo, evodiamine remarkably inhibited PCa xenograft growth in nude mice, repressing expressions of HIF1α, H3K18la, GPX4, PD-L1, and proliferation, while hindering angiogenesis by increasing Sema3A expression. Therefore, Sema3A represents an essential antineoplastic biomarker, while evodiamine may act as a metabolic-epigenetic modulator, as well as a promising agent in either PCa anti-angiogenic therapy or immunotherapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。