Performance Analysis of Blended Membranes of Cellulose Acetate with Variable Degree of Acetylation for CO2/CH4 Separation

不同乙酰化程度醋酸纤维素共混膜分离CO2/CH4性能分析

阅读:9
作者:Ayesha Raza, Sarah Farrukh, Arshad Hussain, Imranullah Khan, Mohd Hafiz Dzarfan Othman, Muhammad Ahsan

Abstract

The separation and capture of CO2 have become an urgent and important agenda because of the CO2-induced global warming and the requirement of industrial products. Membrane-based technologies have proven to be a promising alternative for CO2 separations. To make the gas-separation membrane process more competitive, productive membrane with high gas permeability and high selectivity is crucial. Herein, we developed new cellulose triacetate (CTA) and cellulose diacetate (CDA) blended membranes for CO2 separations. The CTA and CDA blends were chosen because they have similar chemical structures, good separation performance, and its economical and green nature. The best position in Robeson's upper bound curve at 5 bar was obtained with the membrane containing 80 wt.% CTA and 20 wt.% CDA, which shows the CO2 permeability of 17.32 barrer and CO2/CH4 selectivity of 18.55. The membrane exhibits 98% enhancement in CO2/CH4 selectivity compared to neat membrane with only a slight reduction in CO2 permeability. The optimal membrane displays a plasticization pressure of 10.48 bar. The newly developed blended membranes show great potential for CO2 separations in the natural gas industry.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。