Rapamycin Affects the Hippocampal SNARE Complex to Alleviate Cognitive Dysfunction Induced by Surgery in Aged Rats

雷帕霉素影响海马 SNARE 复合体以减轻老年大鼠手术引起的认知功能障碍

阅读:3
作者:Ning Kang, Xiaoguang Han, Zhengqian Li, Taotao Liu, Xinning Mi, Yue Li, Xiangyang Guo, Dengyang Han, Ning Yang

Abstract

Delayed neurocognitive recovery (dNCR) is a common complication that occurs post-surgery, especially in elderly individuals. The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex plays an essential role in various membrane fusion events, such as synaptic vesicle exocytosis and autophagosome-lysosome fusion. Although SNARE complex dysfunction has been observed in several neurodegenerative disorders, the causal link between SNARE-mediated membrane fusion and dNCR remains unclear. We previously demonstrated that surgical stimuli caused cognitive impairment in aged rats by inducing α-synuclein accumulation, inhibiting autophagy, and disrupting neurotransmitter release in hippocampal synaptosomes. Here, we evaluated the effects of propofol anesthesia plus surgery on learning and memory and investigated levels of SNARE proteins and chaperones in hippocampal synaptosomes. Aged rats that received propofol anesthesia and surgery exhibited learning and memory impairments in a Morris water maze test and decreased levels of synaptosome-associated protein 25, synaptobrevin/vesicle-associated membrane protein 2, and syntaxin 1. Levels of SNARE chaperones, including mammalian uncoordinated-18, complexins 1 and 2, cysteine string protein-α, and N-ethylmaleimide-sensitive factor, were all significantly decreased following anesthesia with surgical stress. However, the synaptic vesicle marker synaptophysin was unaffected. The autophagy-enhancer rapamycin attenuated structural and functional disturbances of the SNARE complex and ameliorated disrupted neurotransmitter release. Our results indicate that perturbations of SNARE proteins in hippocampal synaptosomes may underlie the occurrence of dNCR. Moreover, the protective effect of rapamycin may partially occur through recovery of SNARE structural and functional abnormalities. Our findings provide insight into the molecular mechanisms underlying dNCR.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。