Production of rare ginsenosides by biotransformation of Panax notoginseng saponins using Aspergillus fumigatus

烟曲霉生物转化三七皂苷生产稀有人参皂苷

阅读:5
作者:Lian Yang, Dongmei Lin, Feixing Li, Xiuming Cui, Dengji Lou, Xiaoyan Yang

Abstract

Panax notoginseng saponins (PNS) are the main active components of Panax notoginseng. But after oral administration, they need to be converted into rare ginsenosides by human gut microbiota and gastric juice before they can be readily absorbed into the bloodstream and exert their effects. The sources of rare ginsenosides are extremely limited in P. notoginseng and other medical plants, which hinders their application in functional foods and drugs. Therefore, the production of rare ginsenosides by the transformation of PNS using Aspergillus fumigatus was studied in this research. During 50 days at 25 ℃ and 150 rpm, A. fumigatus transformed PNS to 14 products (1-14). They were isolated by varied chromatographic methods, such as silica gel column chromatography, Rp-C18 reversed phase column chromatography, semi-preparative HPLC, Sephadex LH-20 gel column chromatography, and elucidated on the basis of their 1H-NMR, 13C-NMR and ESIMS spectroscopic data. Then, the transformed products (1-14) were isolated and identified as Rk3, Rh4, 20 (R)-Rh1, 20 (S)-Protopanaxatriol, C-K, 20 (R)-Rg3, 20 (S)-Rg3, 20 (S)-Rg2, 20 (R)-R2, Rk1, Rg5, 20 (S)-R2, 20 (R)-Rg2, and 20 (S)-I, respectively. In addition, all transformed products (1-14) were tested for their antimicrobial activity. Among them, compounds 5 (C-K) and 7 [20 (S)-Rg3] showed moderate antimicrobial activities against Staphylococcus aureus and Candida albicans with MIC values of 6.25, 1.25 μg/mL and 1.25, 25 μg/mL, respectively. This study lays the foundation for production of rare ginsenosides.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。