Developmental dynamics of sex reprogramming by high incubation temperatures in a dragon lizard

龙蜥蜴高孵化温度下性别重编程的发育动态

阅读:5
作者:Sarah L Whiteley, Clare E Holleley, Arthur Georges

Background

In some vertebrate species, gene-environment interactions can determine sex, driving bipotential gonads to differentiate into either ovaries or testes. In the central bearded dragon (Pogona vitticeps), the genetic influence of sex chromosomes (ZZ/ZW) can be overridden by high incubation temperatures, causing ZZ male to female sex reversal. Previous research showed ovotestes, a rare gonadal phenotype with traits of both sexes, develop during sex reversal, leading to the hypothesis that sex reversal relies on high temperature feminisation to outcompete the male genetic cue. To test this, we conducted temperature switching experiments at key developmental stages, and analysed the effect on gonadal phenotypes using histology and transcriptomics.

Conclusions

These findings bring new insights to the mechanisms underlying sex reversal, improving our understanding of thermosensitive sex systems in vertebrates.

Results

We found sexual fate is more strongly influenced by the ZZ genotype than temperature. Any exposure to low temperatures (28 °C) caused testes differentiation, whereas sex reversal required longer exposure to high temperatures. We revealed ovotestes exist along a spectrum of femaleness to male-ness at the transcriptional level. We found inter-individual variation in gene expression changes following temperature switches, suggesting both genetic sensitivity to, and the timing and duration of the temperature cue influences sex reversal. Conclusions: These findings bring new insights to the mechanisms underlying sex reversal, improving our understanding of thermosensitive sex systems in vertebrates.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。