Simultaneous inhibition of FXR and TGR5 exacerbates atherosclerotic formation

同时抑制 FXR 和 TGR5 会加剧动脉粥样硬化的形成

阅读:6
作者:Shinobu Miyazaki-Anzai, Masashi Masuda, Shohei Kohno, Moshe Levi, Yuji Shiozaki, Audrey L Keenan, Makoto Miyazaki

Abstract

Simultaneous activation of bile acid receptors farnesoid X receptor (FXR) and G protein-coupled bile acid receptor 1 (TGR5) by INT-767 significantly reduces atherosclerotic formation. In this study, we investigated the effect of simultaneous inactivation of these bile acid receptors in atherosclerosis and which bile acid receptor mediates the anti-atherogenic effect of INT-767. To investigate the role of simultaneous inactivation of FXR and TGR5 in vivo, we generated LDL receptor knockout (LDLR) KO mice with FXR and TGR5 dual deficiency, which exhibited severe atherosclerosis and aortic inflammation through nuclear factor κΒ activation. The lipid-lowering effects of INT-767 were completely blocked by FXR single deficiency but not TGR5 single deficiency. INT-767 was able to block atherosclerotic formation and decrease levels of aortic cytokines and chemokines in LDLR KO mice under either FXR or TGR5 single deficiency. Dual deficiency of FXR and TGR5 completely blocked the anti-atherogenic and anti-inflammatory effects of INT-767 in LDLR KO mice. We demonstrated that 1) FXR and TGR5 dual deficiency exacerbated the development of atherosclerosis and 2) the anti-atherogenic effect of INT-767 requires the anti-inflammatory effect but not the lipid-lowering effect through the simultaneous activation of FXR and TGR5. Our results indicate that dual activation of FXR and TGR5 is a promising strategy for treating atherosclerosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。