Dysregulated brain regulatory T cells fail to control reactive gliosis following repeated antigen stimulation

脑内调节性T细胞功能失调,无法控制反复抗原刺激后的反应性胶质增生。

阅读:1
作者:Sujata Prasad ,Amar Singh ,Shuxian Hu ,Wen S Sheng ,Priyanka Chauhan ,James R Lokensgard

Abstract

This study was undertaken to investigate the role of CD4+FoxP3+ regulatory T cells (Tregs) in regulating neuroinflammation during viral Ag-challenge and re-challenge. CD8+ lymphocytes persisting within tissues are designated tissue-resident memory T cells (TRM), within brain: bTRM. Reactivation of bTRM with T cell epitope peptides generates rapid antiviral recall, but repeated stimulation leads to cumulative dysregulation of microglial activation, proliferation, and prolonged neurotoxic mediator production. Here, we show Tregs were recruited into murine brains following prime-CNS boost, but displayed altered phenotypes following repeated Ag-challenge. In response to repeated Ag, brain Tregs (bTregs) displayed inefficient immunosuppressive capacity, along with reduced expression of suppression of tumorigenicity 2 (ST2) and amphiregulin (Areg). Ex vivo Areg treatment revealed reduced production of neurotoxic mediators such as iNOS, IL-6, and IL-1β, and decreased microglial activation and proliferation. Taken together, these data indicate bTregs display an unstable phenotype and fail to control reactive gliosis in response to repeated Ag-challenge.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。