Collagen triple helix repeat containing-1 promotes functional recovery of sweat glands by inducing adjacent microvascular network reconstruction in vivo

含-1 的胶原三螺旋重复序列通过诱导体内相邻微血管网络重建促进汗腺功能恢复

阅读:4
作者:Xingyu Yuan, Xianlan Duan, Zhao Li, Bin Yao, Enhejirigala, Wei Song, Yi Kong, Yuzhen Wang, Fanliang Zhang, Liting Liang, Shijun Zhu, Mengde Zhang, Chao Zhang, Sha Huang, Xiaobing Fu

Background

Sweat glands (SGs) have low regenerative potential after severe burns or trauma and their regeneration or functional recovery still faces many obstacles. In practice, restoring SG function requires not only the structural integrity of the gland itself, but also its neighboring tissues, especially blood vessels. Collagen triple helix repeat containing-1 (CTHRC1) was first identified in vascular repair, and increasing reports showed a close correlation between cutaneous appendage specification, patterning and regeneration. The

Conclusions

CTHRC1 promotes the development, morphogenesis and function execution of SGs and their neighboring vasculature. Our study provides a novel target for the restoration or regeneration of SG function in vivo.

Methods

The SGs and their adjacent microvascular network of Cthrc1 -/- mice were first investigated using sweat test, laser Doppler imaging, tissue clearing technique and transcriptome analysis. The effects of CTHRC1 on dermal microvascular endothelial cells (DMECs) were further explored with cell proliferation, DiI-labeled acetylated low-density lipoprotein uptake, tube formation and intercellular junction establishment assays. The effects of CTHRC1 on SG function restoration were finally confirmed by replenishing the protein into the paws of Cthrc1 -/- mice.

Results

CTHRC1 is a key regulator of SG function in mice. At the tissue level, Cthrc1 deletion resulted in the disorder and reduction of the microvascular network around SGs. At the molecular level, the knockout of Cthrc1 reduced the expression of vascular development genes and functional proteins in the dermal tissues. Furthermore, CTHRC1 administration considerably enhanced SG function by inducing adjacent vascular network reconstruction. Conclusions: CTHRC1 promotes the development, morphogenesis and function execution of SGs and their neighboring vasculature. Our study provides a novel target for the restoration or regeneration of SG function in vivo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。