Cannabidiol inhibits neuroinflammatory responses and circuit-associated synaptic loss following damage to a songbird vocal pre-motor cortical-like region

大麻二酚可抑制鸣禽发声运动前皮质区受损后的神经炎症反应和回路相关突触丢失

阅读:5
作者:Mark Tripson, Karen Litwa, Ken Soderstrom

Abstract

The non-euphorigenic phytocannabinoid cannabidiol (CBD) has been used successfully to treat childhood-onset epilepsies. These conditions are associated with developmental delays that often include vocal learning. Zebra finch song, like language, is a complex behavior learned during a sensitive period of development. Song quality is maintained through continuous sensorimotor refinement involving circuits that control learning and production. Within the vocal motor circuit, HVC is a cortical-like region that when partially lesioned temporarily disrupts song structure. We previously found CBD (10 mg/kg/day) improves post-lesion vocal recovery. The present studies were done to begin to understand mechanisms possibly responsible for CBD vocal protection. We found CBD markedly reduced expression of inflammatory mediators and oxidative stress markers. These effects were associated with regionally-reduced expression of the microglial marker TMEM119. As microglia are key regulators of synaptic reorganization, we measured synapse densities, finding significant lesion-induced circuit-wide decreases that were largely reversed by CBD. Synaptic protection was accompanied by NRF2 activation and BDNF/ARC/ARG3.1/MSK1 expression implicating mechanisms important to song circuit node mitigation of oxidative stress and promotion of synaptic homeostasis. Our findings demonstrate that CBD promotes an array of neuroprotective processes consistent with modulation of multiple cell signaling systems, and suggest these mechanisms are important to post-lesion recovery of a complex learned behavior.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。