A novel way to synthesize pantothenate in bacteria involves β-alanine synthase present in uracil degradation pathway

细菌中合成泛酸的新方法涉及尿嘧啶降解途径中的 β-丙氨酸合酶

阅读:5
作者:Mariana López-Sámano, Luis Fernando Lozano-Aguirre Beltrán, Rosina Sánchez-Thomas, Araceli Dávalos, Tomás Villaseñor, Jorge Donato García-García, Alejandro García-de Los Santos

Abstract

Pantothenate is an indispensable vitamin precursor of the synthesis of coenzyme A (CoA), a key metabolite required in over 100 metabolic reactions. β-Alanine (β-ala) is an indispensable component of pantothenate. Due to the metabolic relevance of this pathway, we assumed that orthologous genes for ß-alanine synthesis would be present in the genomes of bacteria, archaea, and eukaryotes. However, comparative genomic studies revealed that orthologous gene replacement and loss of synteny occur at high frequency in panD genes. We have previously reported the atypical plasmid-encoded location of the pantothenate pathway genes panC and panB (two copies) in R. etli CFN42. This study also revealed the unexpected absence of a panD gene encoding the aspartate decarboxylase enzyme (ADC), required for the synthesis of β-ala. The aim of this study was to identify the source of β-alanine in Rhizobium etli CFN42. In this study, we present a bioinformatic analysis and an experimental validation demonstrating that the source of β-ala in this R. etli comes from β-alanine synthase, the last enzyme of the uracil degradation pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。