Downregulation of lung miR-203a-3p expression by high-altitude hypoxia enhances VEGF/Notch signaling

高原缺氧导致肺 miR-203a-3p 表达下调,从而增强 VEGF/Notch 信号传导

阅读:4
作者:Wei Cai, Sanli Liu, Ziquan Liu, Shike Hou, Qi Lv, Huanhuan Cui, Xue Wang, Yuxin Zhang, Haojun Fan, Hui Ding

Abstract

Hypoxia-related microRNAs (miRNAs) are involved in the pathogenesis of various diseases. Because potential variations in miRNA expression mediated by hypoxic lung injury at high altitude remain incompletely characterized, we used a rat model to investigate the biochemical and miRNA changes induced by high-altitude hypoxia. After 24, 48, or 72 h of hypoxic exposure, expression of VEGF/Notch pathway-related proteins were increased in rat lung tissues. Microarray screening of hypoxic lung samples revealed 57 differentially expressed miRNAs, 19 of which were related to the VEGF/Notch signaling pathway. We verified that the top downregulated miRNA (miR-203a-3p) suppresses VEGF-A translation through direct binding and also indirectly reduces Notch1, VEGFR2, and Hes1 levels, which restricts the angiogenic capacity of pulmonary microvascular endothelial cells in vitro. These findings may aid in the development of new therapeutic strategies for the prevention and treatment of hypoxic lung injury at high altitude.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。